Molecularly imprinted polymers for 5-fluorouracil release in biological fluids.

نویسندگان

  • Francesco Puoci
  • Francesca Iemma
  • Giuseppe Cirillo
  • Nevio Picci
  • Pietro Matricardi
  • Franco Alhaiqu
چکیده

The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs) as a controlled release device for 5-fluorouracil (5-FU) in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs). MIPs were synthesized using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150 nm with a typi...

متن کامل

Fabrication and Optimization of Molecularly Imprinted Nanofibers in Assessment of Occupational Exposure to 5-fluorouracil

Background and purpose: Cytotoxic drugs are a group of chemicals that raise concerns over the health of healthcare professionals. Therefore, accurate methods are needed to investigate the traces of these drugs. This study was done to fabricate and optimize molecularly imprinted membrane as a specific absorbent in assessment of occupational exposure to 5-fluorouracil. Materials and methods: 5-F...

متن کامل

Imprinted polymers as drug delivery vehicles for anti-inflammatory drugs

The aim of this work was to investigate the possibility of employing semi-covalent molecularly imprinted polymers (MIPs) as a controlled release device for ibuprofen and naproxen in biological fluids, especially gastrointestinal ones, compared to non imprinted polymers (NIPs). The carboxyl groups of ibuprofen and naproxen were converted to vinyl ester group by reacting ibuprofen and vinyl aceta...

متن کامل

Supramolecular recognition of estrogens via molecularly imprinted polymers

The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2007